Fluorescence intensity and lifetime imaging of free and micellar-encapsulated doxorubicin in living cells.
نویسندگان
چکیده
Frequency domain fluorescence lifetime imaging microscopy (FLIM) has been used in combination with laser scanning confocal microscopy to study the cellular uptake behavior of the antitumor drug doxorubicin (DOX) and micellar-encapsulated DOX (PLyAd-DOX). The endocytosis uptake process of PLyAd-DOX was monitored over 72 hours using confocal microscopy, with a maximum fluorescence recorded at incubation periods around 24 hours. The micellar structure was not found to release the encapsulated DOX during the time course of imaging. FLIM revealed single lifetime distributions of PLyAd-DOX during accumulation in the cytoplasm. The free DOX in contrast was observed both in the cytoplasm and the nuclear domain of the cell, showing bimodal lifetime distributions. There was a marked dependence of the measured free-DOX lifetime on concentration within the cell, in contrast to reference experiments in aqueous solution, where no such dependence was found. The results suggest the formation of macromolecular structures inside the living cells.
منابع مشابه
In Vitro Evaluation of Theranostic Polymeric Micelles for Imaging and Drug Delivery in Cancer
For the past decade engineered nanoplatforms have seen a momentous progress in developing a multimodal theranostic formulation which can be simultaneously used for imaging and therapy. In this report we describe the synthesis and application of theranostic phospholipid based polymeric micelles for optical fluorescence imaging and controlled drug delivery. CdSe quantum dots (QDs) and anti-cancer...
متن کاملNuclear uptake of ultrasmall gold-doxorubicin conjugates imaged by fluorescence lifetime imaging microscopy (FLIM) and electron microscopy.
Fluorescence lifetime imaging microscopy (FLIM) has been used to image free and encapsulated doxorubicin (Dox) uptake into cells, since interaction of Dox with DNA leads to a characteristic lifetime change. However, none of the reported Dox conjugates were able to enter cell nuclei. In this work, we use FLIM to show nuclear uptake of 2.7 nm mean diameter Au nanoparticles conjugated to Dox. The ...
متن کاملLongitudinal label-free tracking of cell death dynamics in living engineered human skin tissue with a multimodal microscope.
We demonstrate real-time, longitudinal, label-free tracking of apoptotic and necrotic cells in living tissue using a multimodal microscope. The integrated imaging platform combines multi-photon microscopy (MPM, based on two-photon excitation fluorescence), optical coherence microscopy (OCM), and fluorescence lifetime imaging microscopy (FLIM). Three-dimensional (3-D) co-registered images are ca...
متن کاملMultifunctional gold nanorod theragnostics probed by multi-photon imaging.
This study exhibits the fabrication of target-specific Gold nanorods (GNRs) coupled with an anti-tumorigenic apoptotic drug and provides tracking of the labeled particles as they migrate through cells and release their drug-load to targeted cancer cells. We utilize the photoluminescence property of GNRs and their ability to be conjugated with multiple agents to transform facile rods to a target...
متن کاملComparative Studies of High Contrast Fluorescence Imaging Efficiency of Silica-coated CdSe Quantum Dots with Green and Red Emission
Herein we report the possibility of using green and red emitting silica-coated cadmium selenide (CdSe) quantum dots (QDs) for remarkable stem and cancer cellular imaging, efficient cellular uptake and fluorescence imaging of semi and ultra-thin sections of tumor for in vivo tumor targeted imaging applications. The comparative studies of high contrast cellular imaging behaviours of the silica-co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nanomedicine : nanotechnology, biology, and medicine
دوره 4 1 شماره
صفحات -
تاریخ انتشار 2008